Premium flow meter measuring devices manufacturer

High quality flow meter wholesale manufacturer: The second case is that, in order to ensure the fluidity of crude oil, offshore oil platforms usually use hot medium oil heating pipes to heat the crude oil to ensure that it is stored within a certain temperature range. As the crude oil in the lower tank contains a small amount of water, some of the bottom water will precipitate out of the bilge water after standing, and the water vapor will evaporate during the continuous heating process. The water vapor condenses on the antenna at the top of the tank to form water droplets, causing a strong false signal at the top. Therefore, false signals are suppressed within 0~0.25m and the suppression line is set to 120dB to avoid false signals caused by water vapor condensation and level jumps at the top. In response to this situation, after on-site analysis and research tests decided to do a good job of pre-dewatering treatment, the water content of the crude oil in the lower tank is controlled at less than 0.5%, the heating temperature of the crude oil tank is controlled so that the crude oil in the tank is lower than 65 ℃, and the instrumentation is covered with thermal insulation materials on the outside, etc. Through the above measures, the phenomenon of level jumping caused by the formation of condensation at the antenna of the radar liquid level meter is eliminated. See additional details on flow meter manufacturer.

What are the characteristics of radar water level meter? All measuring components are designed in an integrated manner, and there is no mechanical wear during measurement. Because the measurement is a non-contact measurement, it is not affected by the physical properties such as the density and concentration of the water body, it is not easy to be washed away by floods, has a long service life and is easy to maintain. The advantages of the radar level transmitter are obvious. The editor warmly reminds that to choose the right one, it is still necessary to meet your own situation.

The performance of any level technology relative to instrument induced errors, calibration nuances, and vulnerabilities to process dynamics can have an immediate and adverse impact on fuel consumption. Seamless response to changes in demand and reducing maintenance associated with the instrumentation or damage to hardware are residual benefits that have their own financial ramifications; these aspects should also be considered when implementing any technology. In addition to the “open” or deaerating feedwater heater, the more common shell and tube heat exchangers/condensers can be found in larger scale steam generation cycles where their costs are offset by gains in thermal efficiency. The effectiveness of a shell and tube heat exchanger in transferring energy is contingent, barring hardware anomalies, on accurate level control.

Temperature Compensation- Precision in Any Environment Another advancement in guided radar level measurement technology is the incorporation of mechanisms that compensate for temperature variations. Temperature fluctuations in microwave module circuits can lead to inaccuracies in measuring levels. To tackle this challenge, radar level measurement systems have implemented creative solutions. A crucial aspect of these advancements involves allocating a portion of the radar transmission pulse as a reference pulse. This reference pulse serves as a benchmark for comparing measurements enabling temperature calibration. When temperature changes occur the radar sensor can adjust its measurements accordingly ensuring that environmental conditions have no impact on accuracy. This temperature compensation feature is particularly valuable in applications where significant temperature shifts are common. Industries dealing with temperatures or processes prone to variations, such as petrochemical or food manufacturing sectors, rely on precise measurements. Radar sensors equipped with temperature compensation mechanisms rise to the occasion by delivering reliable results despite changing conditions.

With emphasis placed on customer satisfaction, innovation, product development and overall business transformation, the company continued to innovate and expand with each passing year. KAIDI has successfully achieved global recognition, obtaining the leading position as Asia’s top process automation sensor manufacturer. In the past 5 years, the company has undergone tremendous growth and development – flourishing internationally and providing customers worldwide with the best customized solutions for process automation. See even more information on https://www.kaidi86.com/. Suitable for chemical industry, petroleum industry, metallurgical industry, water conservancy and electronic industry, etc.

The radar level gauge works by electromagnetic waves. Its working principle is to measure the specific liquid level by transmitting electromagnetic waves to the measured target. After the electromagnetic waves are emitted, they are reflected by the medium. For the radar level gauge, its key function is to ensure that it can transmit magnetrol guided wave radar signals smoothly. In our industrial production site, interference often occurs, so which interference sources will affect the measurement of the radar level gauge? let’s see.

If the radar level meter is unreasonably selected, the interference echo cannot be handled well, and the reliability of the instrument will be reduced. Therefore, the following factors should be considered when selecting a radar level meter: Conductivity and dielectric constant of the measured medium. The measured medium is a conductive liquid or a liquid with a dielectric constant above 4. Generally, a common radar is selected. Liquids with small dielectric constants (dielectric constants below 2) and some conductive solids often use precision radars or guided wave radars due to the large amount of interference echoes.

Secondly, in cement production, material level measurement encountered another difficulty is strong dust interference, especially pneumatic conveying powder silo, dust flying when feeding, low visibility, laser level meter and high energy ultrasonic level meter can not be measured, although radar level meter at this time can receive part of the surface echo. But the echo signal was also weakened. In addition, due to the uneven surface of the radar echo is refracted, will also lead to the existence of radar echo; In addition, there are some conditions from the bottom to the bin inflation, so that the material surface loose, material level measurement is more difficult.

The installation of the liquid level gauge should be away from the inlet, outlet, eddy current or protrusions on the inner wall to avoid the interference of electromagnetic waves and affect the measurement. When installing the guided wave radar, make sure that the diameter of the short pipe at the flange connection is greater than the height of the short pipe, otherwise the cable will contact the short pipe wall due to shaking, and the liquid level cannot be measured accurately. How to choose a model, in the final analysis, you still need to understand your own working conditions and the characteristics of different instruments, and judge whether the two match, so that you can get twice the result with half the effort.Want to know about ultrasonic flow meter advantages and disadvantages, click here.

There is AC interference and the voltage is high. For example, for the radar level meter used in the production line, the power supply requirement is 24VDC (typical value), but in the on-site measurement, it is found that the power supply is displayed as 27.2V, which is significantly higher than 24VDC, resulting in a large measurement result and even a radar level meter. crash phenomenon. The installation position of the radar level meter is incorrect, which leads to deviations in the measurement. For example, the accumulation of aggregates in the transfer bin is a “mountain”-shaped cone, but only one radar level meter is installed near the discharge port of the return belt. , the installation position is too close to the discharge opening of the return belt, and at the same time, it is too far from the discharge opening of the feeding belt on both sides. Just below the radar level meter is the drop point of the return belt. If the distance is too close, the aggregate in the falling process will interfere with the radar level meter and form false reflections.