A few advices on welding equipment, MIG and TIG welders, plasma cutters. Identify the types of welding projects and materials you will weld most of the time. Are you creating metal sculptures? Do you intend to restore an old muscle car in your garage? Does the motorcycle you bought years ago require some fabrication? Maybe you need to do basic repair on farm equipment. Taking the time up front to identify the projects that will occupy the biggest percentage of your welding activity will help you determine the specific thickness of metal you will likely weld most often — and ultimately help you select the most suitable welder. Time to get a bit more specific. Let’s take a look at what welding process you can use for each metal type. Keep in mind that many of these materials are also processed using varying combinations of two or more metals to reinforce strength and functionality.
Several MIG welders guides: how to become a better welder and how to choose the top welding equipment. How do I choose what size Tig Welding Rod should I use for the job? For sheet metal up to 1/8” thick, don’t use a welding rod that is bigger than the thickness of metal you are welding…at least not much bigger. A good example…is using a 3/32 rod for welding .040 metal. That will just give you a fit. The amperage is low and the weld puddle needs to be small in order to prevent blowing a hole…and then when you dip the rod into the puddle, the rod is a big heat sink and sucks the heat right out of the puddle making it hard to maintain a consistent size bead. But Beginners should probably not be practicing on really thin metal. If you are a beginner you should be practicing on around 1/8 ” thick metal, and the bigger the rod, the easier it is to feed. For 1/8 ” metal, Use larger diameter rods (3/32” to 1/8”) So here is the rule….thin metal, use a thin rod Thick metal, use a thicker rod. This might seem like a no brainer, but I have answered a lot of questions like this about the rod melting before it gets to the puddle. If torch angle and arc length are right, its usually the rod size.
Delivery of parts to the welding station in an organized and logical fashion is also a way to reduce welding costs. For example, one company was manufacturing concrete mixing drums. In the fabrication process, the company produced 10 parts for one section, then went on to make 10 parts of another drum section, etc. As pieces came off the line, they were put onto the floor of the shop. When it was time to weld, the operator had to hunt for the pieces needed and sort through them. When the outside welding expert pointed out the amount of time being wasted in this process, the company started to batch each one on a cart. In this way, the pieces needed to weld one drum were stored together and could easily be moved to the welding area. This type of scenario is also true for companies that may outsource parts to a vendor. Though it may cost more to have parts delivered in batches, it may save more in time than having to organize and search through parts to be able to get to the welding stage. How many times each piece is handled in the shop may be an eye-opener to reducing wasted time. To measure such an intangible as this, operators are asked to put a soapstone mark on the piece each time it is touched – some companies are surprised to find out how many times a part is picked up, transported and laid down in the manufacturing process. In the case of one company, moving the welding shop closer to the heat treatment station eliminated four extra times that the part was handled. Basically, handling a part as few times as possible and creating a more efficient production line or work cell will reduce overall costs. Looking for the best Welding Supplies? We recommend Welding Supplies Direct & associated company TWS Direct Ltd is an online distributor of a wide variety of welding supplies, welding equipment and welding machine. We supply plasma cutters, MIG, TIG, ARC welding machines and support consumables to the UK, Europe and North America.
Not all aluminum alloys are weldable: For example: 7075 and 2024 are not considered readily weldable using TIG welding. You can usually TIG weld them and they might be fine for a tool tote or some little art project…but don’t be fooled. You can’t depend on the welds in critical applications. Take a tree stand for instance. Lets say Joe gets a good deal on some aluminum angle iron at his friends scrap yard and he decides to make a tree stand. Joe has no way of knowing what alloy of aluminum he got from the scrap yard. He makes the tree stand, it holds together and looks just fine. The welds are real pretty…like a stack of dimes. One day he is sitting in his tree stand about 20 feet up a tree. The stress corrosion that has been happening on a microstrucutural level since he finished welding the tree stand finally comes home to roost and CRACK!!
MIG Welding Increases Welding Speed: In addition to welding aluminum and other softer metals, MIG-welding works faster, provides cleaner welds, and handles many different types of metals. The downside is its complexity. MIG Welders need direct currents, a steady stream of inert gas, and precise control of their torches. The amount of heat generated from MIG welding provides the deep penetration required for a strong weld, while also melting the feed wire rapidly enough to maintain a higher welding speed than other techniques. Given the inert gas required for MIG welding, keep in mind that this technique cannot be conducted in windy areas. The Right Stick Electrode Increases Welding Speed: There are three kinds of electrodes used for stick welding: fast-fill, fill-freeze, and fast-follow. While each electrode has its advantages, the fast-fill electrodes melt quickly and allow welders to work faster.
Never forget that welding, when done improperly, can be hazardous. Electric shock, fumes and gases, arc rays, hot parts, noise and a host of other possible hazards come along with the territory. The ultraviolet and infrared light rays can also burn your skin — similar to a sunburn but without the subsequent tan — and your eyes. This is why the best MIG welding operator knows how to stay safe.
Look for ways to support your hands. Having good support for your hands or arms is crucial for moving the torch with precise control. I do my best welding when the base of my hands or my wrists is supported in some way. Often you can rest your wrists on the part being welded. I keep an assortment of wood and metal blocks near my welding bench, and I often can get better support by positioning a block to rest my torch hand on. There are occasions where I rest my forearms, or even my elbows, on something for support. Many welders set up special support bars, positioned parallel to the joint being welded, and they slide their torch hand along the bar to help follow the joint with fine control. For some out-of-position work, I’ve had to rely on resting only my shoulder on something, and while not ideal, it’s better than having no support at all. Even placing my hip against something stationary can offer a bit of support, but I can’t weld very well when standing ‘free,’ with no support at all. Source: https://www.weldingsuppliesdirect.co.uk/.